Efficient Spectral Methods for Quasi-Equilibrium Closure Approximations of Symmetric Problems on Unit Circle and Sphere
Quasi-equilibrium approximation is a widely used closure approximation approach for model reduction with applications in complex fluids, materials science, etc. It is based on the maximum entropy principle and leads to thermodynamically consistent coarse-grain models. However, its high computational cost is a known barrier for fast and accurate applications. Despite its good mathematical properties, there are very few works on the fast and efficient implementations of quasi-equilibrium approximations. In this paper, we give efficient implementations of quasi-equilibrium approximations for antipodally symmetric problems on unit circle and unit sphere using polynomial and piecewise polynomial approximations. Comparing to the existing methods using linear or cubic interpolations, our approach achieves high accuracy (double precision) with much less storage cost. The methods proposed in this paper can be directly extended to handle other moment closure approximation problems.
READ FULL TEXT