Efficient space-time reduced order model for linear dynamical systems in Python using less than 120 lines of code

11/20/2020
by   Youngkyu Kim, et al.
0

A classical reduced order model (ROM) for dynamical problems typically involves only the spatial reduction of a given problem. Recently, a novel space-time ROM for linear dynamical problems has been developed, which further reduces the problem size by introducing a temporal reduction in addition to a spatial reduction without much loss in accuracy. The authors show an order of a thousand speed-up with a relative error of less than 0.00001 for a large-scale Boltzmann transport problem. In this work, we present for the first time the derivation of the space-time Petrov-Galerkin projection for linear dynamical systems and its corresponding block structures. Utilizing these block structures, we demonstrate the ease of construction of the space-time ROM method with two model problems: 2D diffusion and 2D convection diffusion, with and without a linear source term. For each problem, we demonstrate the entire process of generating the full order model (FOM) data, constructing the space-time ROM, and predicting the reduced-order solutions, all in less than 120 lines of Python code. We compare our Petrov-Galerkin method with the traditional Galerkin method and show that the space-time ROMs can achieve O(100) speed-ups with O(0.001) to O(0.0001) relative errors for these problems. Finally, we present an error analysis for the space-time Petrov-Galerkin projection and derive an error bound, which shows an improvement compared to traditional spatial Galerkin ROM methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset