Efficient Sample Reuse in Policy Gradients with Parameter-based Exploration

01/17/2013
by   Tingting Zhao, et al.
0

The policy gradient approach is a flexible and powerful reinforcement learning method particularly for problems with continuous actions such as robot control. A common challenge in this scenario is how to reduce the variance of policy gradient estimates for reliable policy updates. In this paper, we combine the following three ideas and give a highly effective policy gradient method: (a) the policy gradients with parameter based exploration, which is a recently proposed policy search method with low variance of gradient estimates, (b) an importance sampling technique, which allows us to reuse previously gathered data in a consistent way, and (c) an optimal baseline, which minimizes the variance of gradient estimates with their unbiasedness being maintained. For the proposed method, we give theoretical analysis of the variance of gradient estimates and show its usefulness through extensive experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset