Efficient Recognition of Subgraphs of Planar Cubic Bridgeless Graphs

04/25/2022
by   Miriam Goetze, et al.
0

It follows from the work of Tait and the Four-Color-Theorem that a planar cubic graph is 3-edge-colorable if and only if it contains no bridge. We consider the question of which planar graphs are subgraphs of planar cubic bridgeless graphs, and hence 3-edge-colorable. We provide an efficient recognition algorithm that given an n-vertex planar graph, augments this graph in 𝒪(n^2) steps to a planar cubic bridgeless supergraph, or decides that no such augmentation is possible. The main tools involve the GeneralizedFactor-problem for the fixed embedding case, and SPQR-trees for the variable embedding case.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro