Efficient-Q Learning for Stochastic Games
We present the new efficient-Q learning dynamics for stochastic games beyond the recent concentration of progress on provable convergence to possibly inefficient equilibrium. We let agents follow the log-linear learning dynamics in stage games whose payoffs are the Q-functions and estimate the Q-functions iteratively with a vanishing stepsize. This (implicitly) two-timescale dynamic makes stage games relatively stationary for the log-linear update so that the agents can track the efficient equilibrium of stage games. We show that the Q-function estimates converge to the Q-function associated with the efficient equilibrium in identical-interest stochastic games, almost surely, with an approximation error induced by the softmax response in the log-linear update. The key idea is to approximate the dynamics with a fictional scenario where Q-function estimates are stationary over finite-length epochs. We then couple the dynamics in the main and fictional scenarios to show that the approximation error decays to zero due to the vanishing stepsize.
READ FULL TEXT