Efficient Pre-training of Masked Language Model via Concept-based Curriculum Masking

12/15/2022
by   Mingyu Lee, et al.
0

Masked language modeling (MLM) has been widely used for pre-training effective bidirectional representations, but incurs substantial training costs. In this paper, we propose a novel concept-based curriculum masking (CCM) method to efficiently pre-train a language model. CCM has two key differences from existing curriculum learning approaches to effectively reflect the nature of MLM. First, we introduce a carefully-designed linguistic difficulty criterion that evaluates the MLM difficulty of each token. Second, we construct a curriculum that gradually masks words related to the previously masked words by retrieving a knowledge graph. Experimental results show that CCM significantly improves pre-training efficiency. Specifically, the model trained with CCM shows comparative performance with the original BERT on the General Language Understanding Evaluation benchmark at half of the training cost.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset