Efficient Peer Effects Estimators with Random Group Effects

05/10/2021 ∙ by Guido M. Kuersteiner, et al. ∙ 0

We study linear peer effects models where peers interact in groups, individual's outcomes are linear in the group mean outcome and characteristics, and group effects are random. Our specification is motivated by the moment conditions imposed in Graham 2008. We show that these moment conditions can be cast in terms of a linear random group effects model and lead to a class of GMM estimators that are generally identified as long as there is sufficient variation in group size. We also show that our class of GMM estimators contains a Quasi Maximum Likelihood estimator (QMLE) for the random group effects model, as well as the Wald estimator of Graham 2008 and the within estimator of Lee 2007 as special cases. Our identification results extend insights in Graham 2008 that show how assumptions about random group effects as well as variation in group size can be used to overcome the reflection problem in identifying peer effects. Our QMLE and GMM estimators can easily be augmented with additional covariates and are valid in situations with a large but finite number of different group sizes. Because our estimators are general moment based procedures, using instruments other than binary group indicators in estimation is straight forward. Monte-Carlo simulations show that the bias of the QMLE estimator decreases with the number of groups and the variation in group size, and increases with group size. We also prove the consistency and asymptotic normality of the estimator under reasonable assumptions.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.