Efficient Optimization-based Cable Force Allocation for Geometric Control of Multiple Quadrotors Transporting a Payload
We consider transporting a heavy payload that is attached to multiple quadrotors. The current state-of-the-art controllers either do not avoid inter-robot collision at all, leading to crashes when tasked with carrying payloads that are small in size compared to the cable lengths, or use computational demanding nonlinear optimization. We propose an extension to an existing efficient geometric payload transport controller to effectively avoid such collisions by designing an optimized cable force allocation method, and thus retaining the original stability properties. Our approach introduces a cascade of carefully designed quadratic programs that can be solved efficiently on highly constrained embedded flight controllers. We demonstrate our method on challenging scenarios with up to three small quadrotors with various payloads and cable lengths, with our controller running in real-time directly on the robots.
READ FULL TEXT