Efficient Nonparametric Smoothness Estimation

05/19/2016
by   Shashank Singh, et al.
0

Sobolev quantities (norms, inner products, and distances) of probability density functions are important in the theory of nonparametric statistics, but have rarely been used in practice, partly due to a lack of practical estimators. They also include, as special cases, L^2 quantities which are used in many applications. We propose and analyze a family of estimators for Sobolev quantities of unknown probability density functions. We bound the bias and variance of our estimators over finite samples, finding that they are generally minimax rate-optimal. Our estimators are significantly more computationally tractable than previous estimators, and exhibit a statistical/computational trade-off allowing them to adapt to computational constraints. We also draw theoretical connections to recent work on fast two-sample testing. Finally, we empirically validate our estimators on synthetic data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset