Efficient Neural Architecture Search on Low-Dimensional Data for OCT Image Segmentation

05/07/2019
by   Nils Gessert, et al.
0

Typically, deep learning architectures are handcrafted for their respective learning problem. As an alternative, neural architecture search (NAS) has been proposed where the architecture's structure is learned in an additional optimization step. For the medical imaging domain, this approach is very promising as there are diverse problems and imaging modalities that require architecture design. However, NAS is very time-consuming and medical learning problems often involve high-dimensional data with high computational requirements. We propose an efficient approach for NAS in the context of medical, image-based deep learning problems by searching for architectures on low-dimensional data which are subsequently transferred to high-dimensional data. For OCT-based layer segmentation, we demonstrate that a search on 1D data reduces search time by 87.5 models achieve similar performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset