Efficient Multi-objective Evolutionary 3D Neural Architecture Search for COVID-19 Detection with Chest CT Scans

01/26/2021 ∙ by Xin He, et al. ∙ 0

COVID-19 pandemic has spread globally for months. Due to its long incubation period and high testing cost, there is no clue showing its spread speed is slowing down, and hence a faster testing method is in dire need. This paper proposes an efficient Evolutionary Multi-objective neural ARchitecture Search (EMARS) framework, which can automatically search for 3D neural architectures based on a well-designed search space for COVID-19 chest CT scan classification. Within the framework, we use weight sharing strategy to significantly improve the search efficiency and finish the search process in 8 hours. We also propose a new objective, namely potential, which is of benefit to improve the search process's robustness. With the objectives of accuracy, potential, and model size, we find a lightweight model (3.39 MB), which outperforms three baseline human-designed models, i.e., ResNet3D101 (325.21 MB), DenseNet3D121 (43.06 MB), and MC3_18 (43.84 MB). Besides, our well-designed search space enables the class activation mapping algorithm to be easily embedded into all searched models, which can provide the interpretability for medical diagnosis by visualizing the judgment based on the models to locate the lesion areas.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 3

page 9

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.