Efficient Knowledge Base Management in DCSP

09/30/2010 ∙ by Hong Jiang, et al. ∙ 0

DCSP (Distributed Constraint Satisfaction Problem) has been a very important research area in AI (Artificial Intelligence). There are many application problems in distributed AI that can be formalized as DSCPs. With the increasing complexity and problem size of the application problems in AI, the required storage place in searching and the average searching time are increasing too. Thus, to use a limited storage place efficiently in solving DCSP becomes a very important problem, and it can help to reduce searching time as well. This paper provides an efficient knowledge base management approach based on general usage of hyper-resolution-rule in consistence algorithm. The approach minimizes the increasing of the knowledge base by eliminate sufficient constraint and false nogood. These eliminations do not change the completeness of the original knowledge base increased. The proofs are given as well. The example shows that this approach decrease both the new nogoods generated and the knowledge base greatly. Thus it decreases the required storage place and simplify the searching process.



There are no comments yet.


This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.