Efficient grouping for keypoint detection

10/23/2020
by   Alexey Sidnev, et al.
0

The success of deep neural networks in the traditional keypoint detection task encourages researchers to solve new problems and collect more complex datasets. The size of the DeepFashion2 dataset poses a new challenge on the keypoint detection task, as it comprises 13 clothing categories that span a wide range of keypoints (294 in total). The direct prediction of all keypoints leads to huge memory consumption, slow training, and a slow inference time. This paper studies the keypoint grouping approach and how it affects the performance of the CenterNet architecture. We propose a simple and efficient automatic grouping technique with a powerful post-processing method and apply it to the DeepFashion2 fashion landmark task and the MS COCO pose estimation task. This reduces memory consumption and processing time during inference by up to 19 respectively, without compromising accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro