Efficient Global Planning in Large MDPs via Stochastic Primal-Dual Optimization
We propose a new stochastic primal-dual optimization algorithm for planning in a large discounted Markov decision process with a generative model and linear function approximation. Assuming that the feature map approximately satisfies standard realizability and Bellman-closedness conditions and also that the feature vectors of all state-action pairs are representable as convex combinations of a small core set of state-action pairs, we show that our method outputs a near-optimal policy after a polynomial number of queries to the generative model. Our method is computationally efficient and comes with the major advantage that it outputs a single softmax policy that is compactly represented by a low-dimensional parameter vector, and does not need to execute computationally expensive local planning subroutines in runtime.
READ FULL TEXT