Efficient formulation of a two-noded curved beam element under finite rotations
The paper extends the formulation of a 2D geometrically exact beam element proposed in our previous paper [1] to curved elastic beams. This formulation is based on equilibrium equations in their integrated form, combined with the kinematic relations and sectional equations that link the internal forces to sectional deformation variables. The resulting first-order differential equations are approximated by the finite difference scheme and the boundary value problem is converted to an initial value problem using the shooting method. The paper develops the theoretical framework based on the Navier-Bernoulli hypothesis but the approach could be extended to shear-flexible beams. The initial shape of the beam is captured with high accuracy, for certain shapes including the circular one even exactly. Numerical procedures for the evaluation of equivalent nodal forces and of the element tangent stiffness are presented in detail. Unlike standard finite element formulations, the present approach can increase accuracy by refining the integration scheme on the element level while the number of global degrees of freedom is kept constant. The efficiency and accuracy of the developed scheme are documented by five examples that cover circular and parabolic arches and a spiral-shaped beam. It is also shown that, for initially curved beams, a cross effect in the relations between internal forces and deformation variables arises, i.e., the bending moment affects axial stretching and the normal force affects the curvature.
READ FULL TEXT