Efficient Explicit Time Stepping of High Order Discontinuous Galerkin Schemes for Waves

by   Svenja Schoeder, et al.

This work presents algorithms for the efficient implementation of discontinuous Galerkin methods with explicit time stepping for acoustic wave propagation on unstructured meshes of quadrilaterals or hexahedra. A crucial step towards efficiency is to evaluate operators in a matrix-free way with sum-factorization kernels. The method allows for general curved geometries and variable coefficients. Temporal discretization is carried out by low-storage explicit Runge-Kutta schemes and the arbitrary derivative (ADER) method. For ADER, we propose a flexible basis change approach that combines cheap face integrals with cell evaluation using collocated nodes and quadrature points. Additionally, a degree reduction for the optimized cell evaluation is presented to decrease the computational cost when evaluating higher order spatial derivatives as required in ADER time stepping. We analyze and compare the performance of state-of-the-art Runge-Kutta schemes and ADER time stepping with the proposed optimizations. ADER involves fewer operations and additionally reaches higher throughput by higher arithmetic intensities and hence decreases the required computational time significantly. Comparison of Runge-Kutta and ADER at their respective CFL stability limit renders ADER especially beneficial for higher orders when the Butcher barrier implies an overproportional amount of stages. Moreover, vector updates in explicit Runge--Kutta schemes are shown to take a substantial amount of the computational time due to their memory intensity.


page 1

page 2

page 3

page 4


A high-order discontinuous Galerkin method for nonlinear sound waves

We propose a high-order discontinuous Galerkin scheme for nonlinear acou...

Optimized Runge-Kutta (LDDRK) timestepping schemes for non-constant-amplitude oscillations

Finite differences and Runge-Kutta time stepping schemes used in Computa...

A Hermite-like basis for faster matrix-free evaluation of interior penalty discontinuous Galerkin operators

This work proposes a basis for improved throughput of matrix-free evalua...

An Energy-Based Discontinuous Galerkin Method with Tame CFL Numbers for the Wave Equation

We extend and analyze the energy-based discontinuous Galerkin method for...

Three discontinuous Galerkin methods for one- and two-dimensional nonlinear Dirac equations with a scalar self-interaction

This paper develops three high-order accurate discontinuous Galerkin (DG...

Fast matrix-free evaluation of discontinuous Galerkin finite element operators

We present an algorithmic framework for matrix-free evaluation of discon...

A discontinuous Galerkin approach for atmospheric flows with implicit condensation

We present a discontinuous Galerkin method for moist atmospheric dynamic...

Please sign up or login with your details

Forgot password? Click here to reset