Efficient estimation of Pauli observables by derandomization
We consider the problem of jointly estimating expectation values of many Pauli observables, a crucial subroutine in variational quantum algorithms. Starting with randomized measurements, we propose an efficient derandomization procedure that iteratively replaces random single-qubit measurements with fixed Pauli measurements; the resulting deterministic measurement procedure is guaranteed to perform at least as well as the randomized one. In particular, for estimating any L low-weight Pauli observables, a deterministic measurement on only of order log(L) copies of a quantum state suffices. In some cases, for example when some of the Pauli observables have a high weight, the derandomized procedure is substantially better than the randomized one. Specifically, numerical experiments highlight the advantages of our derandomized protocol over various previous methods for estimating the ground-state energies of small molecules.
READ FULL TEXT