Efficient Dual-Numbers Reverse AD via Well-Known Program Transformations

07/07/2022
by   Tom Smeding, et al.
0

Where dual-numbers forward-mode automatic differentiation (AD) pairs each scalar value with its tangent value, dual-numbers reverse-mode AD attempts to achieve reverse AD using a similarly simple idea: by pairing each scalar value with a backpropagator function. Its correctness and efficiency on higher-order input languages have been analysed by Brunel, Mazza and Pagani, but this analysis used a custom operational semantics for which it is unclear whether it can be implemented efficiently. We take inspiration from their use of linear factoring to optimise dual-numbers reverse-mode AD to an algorithm that has the correct complexity and enjoys an efficient implementation in a standard functional language with support for mutable arrays, such as Haskell. Aside from the linear factoring ingredient, our optimisation steps consist of well-known ideas from the functional programming community. We demonstrate the practical use of our technique by providing a performant implementation that differentiates most of Haskell98.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset