Efficient computation of states and sensitivities for compound structural optimisation problems using a Linear Dependency Aware Solver (LDAS)
Real-world structural optimisation problems involve multiple loading conditions and design constraints, with responses typically depending on states of discretised governing equations. Generally, one uses gradient-based nested analysis and design approaches to solve these problems. Herein, solving both physical and adjoint problems dominates the overall computational effort. Although not commonly detected, real-world problems can contain linear dependencies between encountered physical and adjoint loads. Manually keeping track of such dependencies becomes tedious as design problems become increasingly involved. To detect and exploit such dependencies, this work proposes the use of a Linear Dependency Aware Solver (LDAS), which is able to efficiently detect linear dependencies between all loads to avoid unnecessary solves entirely and automatically. Illustrative examples are provided that demonstrate the need and benefits of using an LDAS, including a run-time experiment.
READ FULL TEXT