Efficient Computation of Optimal Temporal Walks under Waiting-Time Constraints

08/30/2019
by   Anne-Sophie Himmel, et al.
0

Node connectivity plays a central role in temporal network analysis. We provide a comprehensive study of various concepts of walks in temporal graphs, that is, graphs with fixed vertex sets but edge sets changing over time. Importantly, the temporal aspect results in a rich set of optimization criteria for "shortest" walks. Extending and significantly broadening state-of-the-art work of Wu et al. [IEEE TKDE 2016], we provide a quasi-linear-time algorithm for shortest walk computation that is capable to deal with various optimization criteria and any linear combination of these. A central distinguishing factor to Wu et al.'s work is that our model allows to, motivated by real-world applications, respect waiting-time constraints for vertices, that is, the minimum and maximum waiting time allowed in intermediate vertices of a walk. Moreover, other than Wu et al. our algorithm does not request a strictly increasing time evolvement of the walk and can optimize a richer set of optimization criteria. Our experimental studies indicate that our richer modeling can be achieved without significantly worsening the running time.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset