Efficient and adaptive parameterized algorithms on modular decompositions
We study the influence of a graph parameter called modular-width on the time complexity for optimally solving well-known polynomial problems such as Maximum Matching, Triangle Counting, and Maximum s-t Vertex-Capacitated Flow. The modular-width of a graph depends on its (unique) modular decomposition tree, and can be computed in linear time O(n+m) for graphs with n vertices and m edges. Modular decompositions are an important tool for graph algorithms, e.g., for linear-time recognition of certain graph classes. Throughout, we obtain efficient parameterized algorithms of running times O(f(mw)n+m), O(n+f(mw)m) , or O(f(mw)+n+m) for graphs of modular-width mw. Our algorithm for Maximum Matching, running in time O(mw^2 mw · n+m), is both faster and simpler than the recent O(mw^4n+m) time algorithm of Coudert et al. (SODA 2018). For several other problems, e.g., Triangle Counting and Maximum b-Matching, we give adaptive algorithms, meaning that their running times match the best unparameterized algorithms for worst-case modular-width of mw=Θ(n) and they outperform them already for mw=o(n), until reaching linear time for mw=O(1).
READ FULL TEXT