Efficient Adaptive Ensembling for Image Classification

06/15/2022
by   Antonio Bruno, et al.
0

In recent times, except for sporadic cases, the trend in Computer Vision is to achieve minor improvements over considerable increases in complexity. To reverse this tendency, we propose a novel method to boost image classification performances without an increase in complexity. To this end, we revisited ensembling, a powerful approach, not often adequately used due to its nature of increased complexity and training time, making it viable by specific design choices. First, we trained end-to-end two EfficientNet-b0 models (known to be the architecture with the best overall accuracy/complexity trade-off in image classification) on disjoint subsets of data (i.e. bagging). Then, we made an efficient adaptive ensemble by performing fine-tuning of a trainable combination layer. In this way, we were able to outperform the state-of-the-art by an average of 0.5% on the accuracy with restrained complexity both in terms of number of parameters (by 5-60 times), and FLoating point Operations Per Second (by 10-100 times) on several major benchmark datasets, fully embracing the green AI.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset