Effects of data ambiguity and cognitive biases on the interpretability of machine learning models in humanitarian decision making

11/12/2019 ∙ by David Paulus, et al. ∙ 0

The effectiveness of machine learning algorithms depends on the quality and amount of data and the operationalization and interpretation by the human analyst. In humanitarian response, data is often lacking or overburdening, thus ambiguous, and the time-scarce, volatile, insecure environments of humanitarian activities are likely to inflict cognitive biases. This paper proposes to research the effects of data ambiguity and cognitive biases on the interpretability of machine learning algorithms in humanitarian decision making.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.