Effective Image Tampering Localization via Semantic Segmentation Network

08/29/2022
by   Haochen Zhu, et al.
24

With the widespread use of powerful image editing tools, image tampering becomes easy and realistic. Existing image forensic methods still face challenges of low accuracy and robustness. Note that the tampered regions are typically semantic objects, in this letter we propose an effective image tampering localization scheme based on deep semantic segmentation network. ConvNeXt network is used as an encoder to learn better feature representation. The multi-scale features are then fused by Upernet decoder for achieving better locating capability. Combined loss and effective data augmentation are adopted to ensure effective model training. Extensive experimental results confirm that localization performance of our proposed scheme outperforms other state-of-the-art ones.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset