DeepAI
Log In Sign Up

EdinburghNLP at WNUT-2020 Task 2: Leveraging Transformers with Generalized Augmentation for Identifying Informativeness in COVID-19 Tweets

09/06/2020
by   Nickil Maveli, et al.
0

Twitter has become an important communication channel in times of emergency. The ubiquitousness of smartphones enables people to announce an emergency they're observing in real-time. Because of this, more agencies are interested in programatically monitoring Twitter (disaster relief organizations and news agencies) and therefore recognizing the informativeness of a tweet can help filter noise from large volumes of data. In this paper, we present our submission for WNUT-2020 Task 2: Identification of informative COVID-19 English Tweets. Our most successful model is an ensemble of transformers including RoBERTa, XLNet, and BERTweet trained in a semi-supervised experimental setting. The proposed system achieves a F1 score of 0.9011 on the test set (ranking 7th on the leaderboard), and shows significant gains in performance compared to a baseline system using fasttext embeddings.

READ FULL TEXT

page 1

page 2

page 3

page 4

01/31/2022

Disaster Tweets Classification using BERT-Based Language Model

Social networking services have became an important communication channe...
10/11/2020

InfoMiner at WNUT-2020 Task 2: Transformer-based Covid-19 Informative Tweet Extraction

Identifying informative tweets is an important step when building inform...
06/05/2020

Spoken dialect identification in Twitter using a multi-filter architecture

This paper presents our approach for SwissText KONVENS 2020 shared t...