Edge-promoting adaptive Bayesian experimental design for X-ray imaging

04/01/2021
by   Tapio Helin, et al.
0

This work considers sequential edge-promoting Bayesian experimental design for (discretized) linear inverse problems, exemplified by X-ray tomography. The process of computing a total variation type reconstruction of the absorption inside the imaged body via lagged diffusivity iteration is interpreted in the Bayesian framework. Assuming a Gaussian additive noise model, this leads to an approximate Gaussian posterior with a covariance structure that contains information on the location of edges in the posterior mean. The next projection geometry is then chosen through A-optimal Bayesian design, which corresponds to minimizing the trace of the updated posterior covariance matrix that accounts for the new projection. Two and three-dimensional numerical examples based on simulated data demonstrate the functionality of the introduced approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset