Edge-exchangeable graphs and sparsity

03/22/2016
by   Tamara Broderick, et al.
0

A known failing of many popular random graph models is that the Aldous-Hoover Theorem guarantees these graphs are dense with probability one; that is, the number of edges grows quadratically with the number of nodes. This behavior is considered unrealistic in observed graphs. We define a notion of edge exchangeability for random graphs in contrast to the established notion of infinite exchangeability for random graphs --- which has traditionally relied on exchangeability of nodes (rather than edges) in a graph. We show that, unlike node exchangeability, edge exchangeability encompasses models that are known to provide a projective sequence of random graphs that circumvent the Aldous-Hoover Theorem and exhibit sparsity, i.e., sub-quadratic growth of the number of edges with the number of nodes. We show how edge-exchangeability of graphs relates naturally to existing notions of exchangeability from clustering (a.k.a. partitions) and other familiar combinatorial structures.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset