EASM: Efficiency-Aware Switch Migration for Balancing Controller Loads in Software-Defined Networking

11/23/2017 ∙ by Tao Hu, et al. ∙ 0

Distributed multi-controller deployment is a promising method to achieve a scalable and reliable control plane of Software-Defined Networking (SDN). However, it brings a new challenge for balancing loads on the distributed controllers as the network traffic dynamically changes. The unbalanced load distribution on the controllers will increase response delay for processing flows and reduce the controllers'throughput. Switch migration is an effective approach to solve the problem. However, existing schemes focus only on the load balancing performance but ignore migration efficiency, which may result in high migration costs and unnecessary control overheads. This paper proposes Efficiency-Aware Switch Migration (EASM) to balance the controllers'loads and improve migration efficiency. We introduce load difference matrix and trigger factor to measure load balancing on controllers. We also introduce the migration efficiency problem, which considers load balancing rate and migration cost simultaneously to optimally migrate switches. We propose EASM to efficiently solve to the problem. The simulation results show that EASM outperforms baseline schemes by reducing the controller response time by about 21.9 good load balancing rate, low migration costs and migration time, when the network scale changes.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.