Early Detection of Parkinson's Disease using Motor Symptoms and Machine Learning

04/18/2023
by   Poojaa C, et al.
0

Parkinson's disease (PD) has been found to affect 1 out of every 1000 people, being more inclined towards the population above 60 years. Leveraging wearable-systems to find accurate biomarkers for diagnosis has become the need of the hour, especially for a neurodegenerative condition like Parkinson's. This work aims at focusing on early-occurring, common symptoms, such as motor and gait related parameters to arrive at a quantitative analysis on the feasibility of an economical and a robust wearable device. A subset of the Parkinson's Progression Markers Initiative (PPMI), PPMI Gait dataset has been utilised for feature-selection after a thorough analysis with various Machine Learning algorithms. Identified influential features has then been used to test real-time data for early detection of Parkinson Syndrome, with a model accuracy of 91.9

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro