eAnt-Miner : An Ensemble Ant-Miner to Improve the ACO Classification

09/09/2014
by   Gopinath Chennupati, et al.
0

Ant Colony Optimization (ACO) has been applied in supervised learning in order to induce classification rules as well as decision trees, named Ant-Miners. Although these are competitive classifiers, the stability of these classifiers is an important concern that owes to their stochastic nature. In this paper, to address this issue, an acclaimed machine learning technique named, ensemble of classifiers is applied, where an ACO classifier is used as a base classifier to prepare the ensemble. The main trade-off is, the predictions in the new approach are determined by discovering a group of models as opposed to the single model classification. In essence, we prepare multiple models from the randomly replaced samples of training data from which, a unique model is prepared by aggregating the models to test the unseen data points. The main objective of this new approach is to increase the stability of the Ant-Miner results there by improving the performance of ACO classification. We found that the ensemble Ant-Miners significantly improved the stability by reducing the classification error on unseen data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset