Dynamics of Gender Bias in Computing

11/07/2022
by   Thomas J. Misa, et al.
0

Gender bias in computing is a hard problem that has resisted decades of research. One obstacle has been the absence of systematic data that might indicate when gender bias emerged in computing and how it has changed. This article presents a new dataset (N=50,000) focusing on formative years of computing as a profession (1950-1980) when U.S. government workforce statistics are thin or non-existent. This longitudinal dataset, based on archival records from six computer user groups (SHARE, USE, and others) and ACM conference attendees and membership rosters, revises commonly held conjectures that gender bias in computing emerged during professionalization of computer science in the 1960s or 1970s and that there was a 'linear' one-time onset of gender bias to the present. Such a linear view also lent support to the "pipeline" model of computing's "losing" women at successive career stages. Instead, this dataset reveals three distinct periods of gender bias in computing and so invites temporally distinct explanations for these changing dynamics. It significantly revises both scholarly assessment and popular understanding about gender bias in computing. It also draws attention to diversity within computing. One consequence of this research for CS reform efforts today is data-driven recognition that legacies of gender bias beginning in the mid-1980s (not in earlier decades) is the problem. A second consequence is correcting the public image of computer science: this research shows that gender bias is a contingent aspect of professional computing, not an intrinsic or permanent one.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro