Dynamically borrowing strength from another study
Meta-analytic methods may be used to combine evidence from different sources of information. Quite commonly, the normal-normal hierarchical model (NNHM) including a random-effect to account for between-study heterogeneity is utilized for such analyses. The same modeling framework may also be used to not only derive a combined estimate, but also to borrow strength for a particular study from another by deriving a shrinkage estimate. For instance, a small-scale randomized controlled trial could be supported by a non-randomized study, e.g. a clinical registry. This would be particularly attractive in the context of rare diseases. We demonstrate that a meta-analysis still makes sense in this extreme two-study setup, as illustrated using a recent trial and a clinical registry in Creutzfeld-Jakob disease. Derivation of a shrinkage estimate within a Bayesian random-effects meta-analysis may substantially improve a given estimate even based on only a single additional estimate while accounting for potential effect heterogeneity between the studies. The proposed approach is quite generally applicable to combine different types of evidence originating e.g. from meta-analyses or individual studies. An application of this more general setup is provided in immunosuppression following liver transplantation in children.
READ FULL TEXT