Dynamical Systems Theory and Algorithms for NP-hard Problems
This article surveys the burgeoning area at the intersection of dynamical systems theory and algorithms for NP-hard problems. Traditionally, computational complexity and the analysis of non-deterministic polynomial-time (NP)-hard problems have fallen under the purview of computer science and discrete optimization. However, over the past few years, dynamical systems theory has increasingly been used to construct new algorithms and shed light on the hardness of problem instances. We survey a range of examples that illustrate the use of dynamical systems theory in the context of computational complexity analysis and novel algorithm construction. In particular, we summarize a) a novel approach for clustering graphs using the wave equation partial differential equation, b) invariant manifold computations for the traveling salesman problem, c) novel approaches for building quantum networks of Duffing oscillators to solve the MAX-CUT problem, d) applications of the Koopman operator for analyzing optimization algorithms, and e) the use of dynamical systems theory to analyze computational complexity.
READ FULL TEXT