Dynamic Weight Alignment for Convolutional Neural Networks

12/18/2017
by   Brian Kenji Iwana, et al.
0

In this paper, we propose a method of improving Convolutional Neural Networks (CNN) by determining the optimal alignment of weights and inputs using dynamic programming. Conventional CNNs convolve learnable shared weights, or filters, across the input data. The filters use a linear matching of weights to inputs using an inner product between the filter and a window of the input. However, it is possible that there exists a more optimal alignment of weights. Thus, we propose the use of Dynamic Time Warping (DTW) to dynamically align the weights to optimized input elements. This dynamic alignment is useful for time series recognition due to the complexities of temporal relations and temporal distortions. We demonstrate the effectiveness of the proposed architecture on the Unipen online handwritten digit and character datasets, the UCI Spoken Arabic Digit dataset, and the UCI Activities of Daily Life dataset.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset