Dynamic system optimal traffic assignment with atomic users: Convergence and stability

01/01/2021 ∙ by Koki Satsukawa, et al. ∙ 0

In this study, we analyse the convergence and stability of dynamic system optimal (DSO) traffic assignment with fixed departure times. We first formulate the DSO traffic assignment problem as a strategic game wherein atomic users select routes that minimise their marginal social costs, called a 'DSO game'. By utilising the fact that the DSO game is a potential game, we prove that a globally optimal state is stochastically stable under the logit response dynamics, and the better/best response dynamics converges to locally optimal states. Furthermore, as an application of DSO assignment, we examine characteristics of the evolutionary implementation scheme of marginal cost pricing. Through theoretical comparison with a fixed pricing scheme, we found the following properties of the evolutionary implementation scheme: (i) the total travel time decreases smoother to an efficient traffic state as congestion externalities are perfectly internalised; (ii) a traffic state would reach a more efficient state as the globally optimal state is stabilised. Numerical experiments also suggest that these properties make the evolutionary scheme robust in the sense that they prevent a traffic state from going to worse traffic states with high total travel times.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.