Dynamic Routing for Traffic Flow through Multi-agent Systems
Routing strategies for traffics and vehicles have been historically studied. However, in the absence of considering drivers' preferences, current route planning algorithms are developed under ideal situations where all drivers are expected to behave rationally and properly. Especially, for jumbled urban road networks, drivers' actual routing strategies deteriorated to a series of empirical and selfish decisions that result in congestion. Self-evidently, if minimum mobility can be kept, traffic congestion is avoidable by traffic load dispersing. In this paper, we establish a novel dynamic routing method catering drivers' preferences and retaining maximum traffic mobility simultaneously through multi-agent systems (MAS). Modeling human-drivers' behavior through agents' dynamics, MAS can analyze the global behavior of the entire traffic flow. Therefore, regarding agents as particles in smoothed particles hydrodynamics (SPH), we can enforce the traffic flow to behave like a real flow. Thereby, with the characteristic of distributing itself uniformly in road networks, our dynamic routing method realizes traffic load balancing without violating the individual time-saving motivation. Moreover, as a discrete control mechanism, our method is robust to chaos meaning driver's disobedience can be tolerated. As controlled by SPH based density, the only intelligent transportation system (ITS) we require is the location-based service (LBS). A mathematical proof is accomplished to scrutinize the stability of the proposed control law. Also, multiple testing cases are built to verify the effectiveness of the proposed dynamic routing algorithm.
READ FULL TEXT