Dynamic Prioritization and Adaptive Scheduling using Deep Deterministic Policy Gradient for Deploying Microservice-based VNFs

02/17/2023
by   Swarna B. Chetty, et al.
0

The Network Function Virtualization (NFV)-Resource Allocation (RA) problem is NP-Hard. Traditional deployment methods revealed the existence of a starvation problem, which the researchers failed to recognize. Basically, starvation here, means the longer waiting times and eventual rejection of low-priority services due to a 'time out'. The contribution of this work is threefold: a) explain the existence of the starvation problem in the existing methods and their drawbacks, b) introduce 'Adaptive Scheduling' (AdSch) which is an 'intelligent scheduling' scheme using a three-factor approach (priority, threshold waiting time, and reliability), which proves to be more reasonable than traditional methods solely based on priority, and c) a 'Dynamic Prioritization' (DyPr), allocation method is also proposed for unseen services and the importance of macro- and micro-level priority. We presented a zero-touch solution using Deep Deterministic Policy Gradient (DDPG) for adaptive scheduling and an online-Ridge Regression (RR) model for dynamic prioritization. The DDPG successfully identified the 'Beneficial and Starving' services, efficiently deploying twice as many low-priority services as others, reducing the starvation problem. Our online-RR model learns the pattern in less than 100 transitions, and the prediction model has an accuracy rate of more than 80

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset