Dynamic optimization with side information
We present a data-driven framework for incorporating side information in dynamic optimization under uncertainty. Specifically, our approach uses predictive machine learning methods (such as k-nearest neighbors, kernel regression, and random forests) to weight the relative importance of various data-driven uncertainty sets in a robust optimization formulation. Through a novel measure concentration result for local machine learning methods, we prove that the proposed framework is asymptotically optimal for stochastic dynamic optimization with covariates. We also describe a general-purpose approximation for the proposed framework, based on overlapping linear decision rules, which is computationally tractable and produces high-quality solutions for dynamic problems with many stages. Across a variety of examples in shipment planning, inventory management, and finance, our method achieves improvements of up to 15 problems with twelve stages.
READ FULL TEXT