Dynamic Multiscale Graph Neural Networks for 3D Skeleton-Based Human Motion Prediction

03/17/2020
by   Maosen Li, et al.
0

We propose novel dynamic multiscale graph neural networks (DMGNN) to predict 3D skeleton-based human motions. The core idea of DMGNN is to use a multiscale graph to comprehensively model the internal relations of a human body for motion feature learning. This multiscale graph is adaptive during training and dynamic across network layers. Based on this graph, we propose a multiscale graph computational unit (MGCU) to extract features at individual scales and fuse features across scales. The entire model is action-category-agnostic and follows an encoder-decoder framework. The encoder consists of a sequence of MGCUs to learn motion features. The decoder uses a proposed graph-based gate recurrent unit to generate future poses. Extensive experiments show that the proposed DMGNN outperforms state-of-the-art methods in both short and long-term predictions on the datasets of Human 3.6M and CMU Mocap. We further investigate the learned multiscale graphs for the interpretability. The codes could be downloaded from https://github.com/limaosen0/DMGNN.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset