Dynamic Mode Decomposition: Theory and Data Reconstruction

09/23/2019
by   Tim Krake, et al.
0

Dynamic Mode Decomposition (DMD) is a data-driven decomposition technique extracting spatio-temporal patterns of time-dependent phenomena. In this paper, we perform a comprehensive theoretical analysis of various variants of DMD. We provide a systematic advancement of these and examine the interrelations. In addition, several results of each variant are proven. Our main result is the exact reconstruction property. To this end, a new modification of scaling factors is presented and a new concept of an error scaling is introduced to guarantee an error-free reconstruction of the data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro