Dynamic mode decomposition as an analysis tool for time-dependent partial differential equations

03/09/2022
by   Miha Rot, et al.
0

The time-dependent fields obtained by solving partial differential equations in two and more dimensions quickly overwhelm the analytical capabilities of the human brain. A meaningful insight into the temporal behaviour can be obtained by using scalar reductions, which, however, come with a loss of spatial detail. Dynamic Mode Decomposition is a data-driven analysis method that solves this problem by identifying oscillating spatial structures and their corresponding frequencies. This paper presents the algorithm and provides a physical interpretation of the results by applying the decomposition method to a series of increasingly complex examples.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro