DeepAI AI Chat
Log In Sign Up

Dynamic Infection Spread Model Based Group Testing

by   Batuhan Arasli, et al.
University of Maryland

We study a dynamic infection spread model, inspired by the discrete time SIR model, where infections are spread via non-isolated infected individuals. While infection keeps spreading over time, a limited capacity testing is performed at each time instance as well. In contrast to the classical, static, group testing problem, the objective in our setup is not to find the minimum number of required tests to identify the infection status of every individual in the population, but to control the infection spread by detecting and isolating the infections over time by using the given, limited number of tests. In order to analyze the performance of the proposed algorithms, we focus on the mean-sense analysis of the number of individuals that remain non-infected throughout the process of controlling the infection. We propose two dynamic algorithms that both use given limited number of tests to identify and isolate the infections over time, while the infection spreads. While the first algorithm is a dynamic randomized individual testing algorithm, in the second algorithm we employ the group testing approach similar to the original work of Dorfman. By considering weak versions of our algorithms, we obtain lower bounds for the performance of our algorithms. Finally, we implement our algorithms and run simulations to gather numerical results and compare our algorithms and theoretical approximation results under different sets of system parameters.


page 1

page 2

page 3

page 4


Dynamic SAFFRON: Disease Control Over Time Via Group Testing

We consider the dynamic infection spread model that is based on the disc...

Group Testing with a Graph Infection Spread Model

We propose a novel infection spread model based on a random connection g...

Welfare-Maximizing Pooled Testing

In an epidemic, how should an organization with limited testing resource...

Zombie Politics: Evolutionary Algorithms to Counteract the Spread of Negative Opinions

This paper is about simulating the spread of opinions in a society and a...

Improving Biomarker Based HIV Incidence Estimation in the Treatment Era

Estimating HIV-1 incidence using biomarker assays in cross-sectional sur...

Dynamical Dorfman Testing with Quarantine

We consider dynamical group testing problem with a community structure. ...

Adaptive Group Testing on Networks with Community Structure

Since the inception of the group testing problem in World War II, the pr...