Dynamic Geometric Independent Set

07/16/2020
by   Sujoy Bhore, et al.
0

We present fully dynamic approximation algorithms for the Maximum Independent Set problem on several types of geometric objects: intervals on the real line, arbitrary axis-aligned squares in the plane and axis-aligned d-dimensional hypercubes. It is known that a maximum independent set of a collection of n intervals can be found in O(nlog n) time, while it is already NP-hard for a set of unit squares. Moreover, the problem is inapproximable on many important graph families, but admits a PTAS for a set of arbitrary pseudo-disks. Therefore, a fundamental question in computational geometry is whether it is possible to maintain an approximate maximum independent set in a set of dynamic geometric objects, in truly sublinear time per insertion or deletion. In this work, we answer this question in the affirmative for intervals, squares and hypercubes. First, we show that for intervals a (1+ε)-approximate maximum independent set can be maintained with logarithmic worst-case update time. This is achieved by maintaining a locally optimal solution using a constant number of constant-size exchanges per update. We then show how our interval structure can be used to design a data structure for maintaining an expected constant factor approximate maximum independent set of axis-aligned squares in the plane, with polylogarithmic amortized update time. Our approach generalizes to d-dimensional hypercubes, providing a O(4^d)-approximation with polylogarithmic update time. Those are the first approximation algorithms for any set of dynamic arbitrary size geometric objects; previous results required bounded size ratios to obtain polylogarithmic update time. Furthermore, it is known that our results for squares (and hypercubes) cannot be improved to a (1+ε)-approximation with the same update time.

READ FULL TEXT
research
08/02/2023

Fully Dynamic Maximum Independent Sets of Disks in Polylogarithmic Update Time

A fundamental question in computational geometry is for a dynamic collec...
research
08/18/2021

Worst-Case Efficient Dynamic Geometric Independent Set

We consider the problem of maintaining an approximate maximum independen...
research
03/05/2020

Dynamic Approximate Maximum Independent Set of Intervals, Hypercubes and Hyperrectangles

Independent set is a fundamental problem in combinatorial optimization. ...
research
03/27/2022

Sublinear Dynamic Interval Scheduling (on one or multiple machines)

We revisit the complexity of the classical Interval Scheduling in the dy...
research
07/03/2022

On Streaming Algorithms for Geometric Independent Set and Clique

We study the maximum geometric independent set and clique problems in th...
research
09/09/2019

Maximum Bipartite Subgraph of Geometric Intersection Graphs

We study the Maximum Bipartite Subgraph(MBS) problem, which is defined a...
research
02/18/2020

Independent Sets of Dynamic Rectangles: Algorithms and Experiments

We study the maximal independent set (MIS) and maximum independent set (...

Please sign up or login with your details

Forgot password? Click here to reset