Dynamic Function-on-Scalars Regression

06/05/2018
by   Daniel R. Kowal, et al.
0

We develop a modeling framework for dynamic function-on-scalars regression, in which a time series of functional data is regressed on a time series of scalar predictors. The regression coefficient function for each predictor is allowed to be dynamic, which is essential for applications where the association between predictors and a (functional) response is time-varying. For greater modeling flexibility, we design a nonparametric reduced-rank functional data model with an unknown functional basis expansion, which is both data-adaptive and, unlike most existing methods, modeled as unknown for appropriate uncertainty quantification. Within a Bayesian framework, we introduce shrinkage priors that simultaneously (i) regularize time-varying regression coefficient functions to be locally static, (ii) effectively remove unimportant predictor variables from the model, and (iii) reduce sensitivity to the selected rank of the model. A simulation analysis confirms the importance of these shrinkage priors, with substantial improvements over existing alternatives. We develop a novel projection-based Gibbs sampling algorithm, which offers unrivaled computational scalability for fully Bayesian functional regression. We apply the proposed methodology (i) to characterize the effects of demographic predictors on age-specific fertility rates in South and Southeast Asia, and (ii) to analyze the time-varying impact of macroeconomic variables on the U.S. yield curve.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro