DSPGAN: a GAN-based universal vocoder for high-fidelity TTS by time-frequency domain supervision from DSP

11/02/2022
by   Kun Song, et al.
0

Recent development of neural vocoders based on the generative adversarial neural network (GAN) has shown their advantages of generating raw waveform conditioned on mel-spectrogram with fast inference speed and lightweight networks. Whereas, it is still challenging to train a universal neural vocoder that can synthesize high-fidelity speech from various scenarios with unseen speakers, languages, and speaking styles. In this paper, we propose DSPGAN, a GAN-based universal vocoder for high-fidelity speech synthesis by applying the time-frequency domain supervision from digital signal processing (DSP). To eliminate the mismatch problem caused by the ground-truth spectrograms in training phase and the predicted spectrograms in inference phase, we leverage the mel-spectrogram extracted from the waveform generated by a DSP module, rather than the predicted mel-spectrogram from the Text-to-Speech (TTS) acoustic model, as the time-frequency domain supervision to the GAN-based vocoder. We also utilize sine excitation as the time-domain supervision to improve the harmonic modeling and eliminate various artifacts of the GAN-based vocoder. Experimental results show that DSPGAN significantly outperforms the compared approaches and can generate high-fidelity speech based on diverse data in TTS.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset