Drug-drug Interaction Extraction via Recurrent Neural Network with Multiple Attention Layers
Drug-drug interaction (DDI) is a vital information when physicians and pharmacists intend to co-administer two or more drugs. Thus, several DDI databases are constructed to avoid mistakenly combined use. In recent years, automatically extracting DDIs from biomedical text has drawn researchers' attention. However, the existing work utilize either complex feature engineering or NLP tools, both of which are insufficient for sentence comprehension. Inspired by the deep learning approaches in natural language processing, we propose a recur- rent neural network model with multiple attention layers for DDI classification. We evaluate our model on 2013 SemEval DDIExtraction dataset. The experiments show that our model classifies most of the drug pairs into correct DDI categories, which outperforms the existing NLP or deep learning methods.
READ FULL TEXT