DropTrack – automatic droplet tracking using deep learning for microfluidic applications

by   Mihir Durve, et al.

Deep neural networks are rapidly emerging as data analysis tools, often outperforming the conventional techniques used in complex microfluidic systems. One fundamental analysis frequently desired in microfluidic experiments is counting and tracking the droplets. Specifically, droplet tracking in dense emulsions is challenging as droplets move in tightly packed configurations. Sometimes the individual droplets in these dense clusters are hard to resolve, even for a human observer. Here, two deep learning-based cutting-edge algorithms for object detection (YOLO) and object tracking (DeepSORT) are combined into a single image analysis tool, DropTrack, to track droplets in microfluidic experiments. DropTrack analyzes input videos, extracts droplets' trajectories, and infers other observables of interest, such as droplet numbers. Training an object detector network for droplet recognition with manually annotated images is a labor-intensive task and a persistent bottleneck. This work partly resolves this problem by training object detector networks (YOLOv5) with hybrid datasets containing real and synthetic images. We present an analysis of a double emulsion experiment as a case study to measure DropTrack's performance. For our test case, the YOLO networks trained with 60 synthetic images show similar performance in droplet counting as with the one trained using 100 60 (mAP), mean square error in counting the droplets, and inference speed. The fastest configuration of DropTrack runs inference at about 30 frames per second, well within the standards for real-time image analysis.


page 5

page 10

page 16


Benchmarking YOLOv5 and YOLOv7 models with DeepSORT for droplet tracking applications

Tracking droplets in microfluidics is a challenging task. The difficulty...

A unified neural network for object detection, multiple object tracking and vehicle re-identification

Deep SORTwojke2017simple is a tracking-by-detetion approach to multiple ...

Mono-Camera 3D Multi-Object Tracking Using Deep Learning Detections and PMBM Filtering

Monocular cameras are one of the most commonly used sensors in the autom...

Object Detection and Tracking Algorithms for Vehicle Counting: A Comparative Analysis

The rapid advancement in the field of deep learning and high performance...

Confidence Trigger Detection: An Approach to Build Real-time Tracking-by-detection System

With deep learning based image analysis getting popular in recent years,...

Towards dense object tracking in a 2D honeybee hive

From human crowds to cells in tissue, the detection and efficient tracki...

ConvNets for Counting: Object Detection of Transient Phenomena in Steelpan Drums

We train an object detector built from convolutional neural networks to ...

Please sign up or login with your details

Forgot password? Click here to reset