Drop-Activation: Implicit Parameter Reduction and Harmonic Regularization
Overfitting frequently occurs in deep learning. In this paper, we propose a novel regularization method called Drop-Activation to reduce overfitting and improve generalization. The key idea is to drop nonlinear activation functions by setting them to be identity functions randomly during training time. During testing, we use a deterministic network with a new activation function to encode the average effect of dropping activations randomly. Experimental results on CIFAR-10, CIFAR-100, SVHN, and EMNIST show that Drop-Activation generally improves the performance of popular neural network architectures. Furthermore, unlike dropout, as a regularizer Drop-Activation can be used in harmony with standard training and regularization techniques such as Batch Normalization and AutoAug. Our theoretical analyses support the regularization effect of Drop-Activation as implicit parameter reduction and its capability to be used together with Batch Normalization.
READ FULL TEXT