DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs

03/01/2019 ∙ by Dheeru Dua, et al. ∙ 0

Reading comprehension has recently seen rapid progress, with systems matching humans on the most popular datasets for the task. However, a large body of work has highlighted the brittleness of these systems, showing that there is much work left to be done. We introduce a new English reading comprehension benchmark, DROP, which requires Discrete Reasoning Over the content of Paragraphs. In this crowdsourced, adversarially-created, 96k-question benchmark, a system must resolve references in a question, perhaps to multiple input positions, and perform discrete operations over them (such as addition, counting, or sorting). These operations require a much more comprehensive understanding of the content of paragraphs than what was necessary for prior datasets. We apply state-of-the-art methods from both the reading comprehension and semantic parsing literature on this dataset and show that the best systems only achieve 32.7 performance is 96.0 comprehension methods with simple numerical reasoning to achieve 47.0

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 11

page 12

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.