DRONE: a Distributed gRaph cOmputiNg Engine
Nowadays, in big data era, social networks, graph database, knowledge graph, electronic commerce and etc. demand efficient and scalable capability to process ever increasingly volume of graph-structured data. To meet the challenge, two mainstream distributed programming models, vertex-centric VC and subgraph-centric (SC) were proposed. Compared to the VC model, the SC model converges faster with less communication overhead on well-partitioned graphs, and is easy to program with due to the "think like a graph" philosophy. However, edge-cut method causes significant performance bottleneck for preprocessing large graphs, especially power-law graphs. Although the edge-cut method is considered as a natural choice of subgraph-centric model for graph partitioning, and adopted by Giraph++, Blogel, GRAPE. Thus, the SC model is less competitive in practice. In this paper, we present an innovative distributed graph computing framework, DRONE(Distributed gRaph cOmputiNg Engine). It combines the subgraph-centric model and the vertex-cut graph partitioning strategy. Experiments show that DRONE outperform the state-of-art distributed graph computing engines on real-world graphs and synthetic power-law graphs. DRONE is capable to scale up to process one-trillion-edges synthetic power-law graphs, which is orders of magnitude larger than previously reported by existing SC-based frameworks.
READ FULL TEXT